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Local atomic arrangements expected in a short-range-ordered ternary alloy

system are discussed from the theoretical viewpoint of X-ray diffraction by

employing a microdomain model, initially developed for a binary alloy system

[Hashimoto (1974). Acta Cryst. A30, 792±798]. It is concluded that a negative

partial intensity of short-range-order diffuse scattering is caused by a mixing

occupation of two relevant atomic species on the sublattice in the ordered lattice

within microdomains, even though there is no heterogeneity of atomic

concentration in the alloy crystal, such as a segregation of particular atomic

species.

1. Introduction

X-ray elastic scattering from a disordered A±B±C ternary

alloy is composed of fundamental re¯ection and short-range-

order (SRO) diffuse scattering. The SRO diffuse scattering

can be expressed as a sum of the partial intensities from three

kinds of atomic pairs, A±B, B±C and C±A (Hashimoto et al.,

1985; Hashimoto, 1987a):

ISRO�q� � IAB
SRO�q� � IBC

SRO�q� � ICA
SRO�q�; �1�

which can be illustrated one-dimensionally as shown in Fig. 1.

The synchrotron-radiation experiment on the Cu2NiZn

alloy by the present author and his co-workers is considered to

be one of the successful studies that have separated the X-ray

diffuse intensity from a ternary disordered alloy into the

partial intensities (Hashimoto et al., 1985). These workers

disclosed that the partial intensity from the Cu±Ni pairs

appeared as a negative intensity maximum at the 100 and its

equivalent superlattice re¯ection positions. Fig. 1 shows this

situation schematically with a negative intensity maximum of

IBC.

Two theoretical works (Hashimoto, 1987a,b) followed the

experiments. One of them (Hashimoto, 1987a) proved math-

ematically the existence of a negative partial intensity and

derived inequality relations among the three partial diffuse

intensities. The other (Hashimoto, 1987b) presented a

thermodynamical discussion on a ternary alloy system based

on the de Fontaine method (de Fontaine, 1972, 1973) in order

to characterize the negative partial intensity maximum.

We are now interested in studying the local atomic con-

®guration causing the negative partial intensity. This will be

developed by extending the microdomain model that was

applied to a SRO binary alloy by the present author (Hashi-

moto, 1974, hereinafter referred to as paper I). The structure is

illustrated schematically in Fig. 2, in which the shaded area

represents a random matrix and the circles represent minute

ordered regions or the so-called microdomains. The ordered

structure is composed of several sublattices occupied by

different atomic fractions. It has been suggested that such a

microdomain structure exists in SRO alloys (Gehlen & Cohen,

1965; Greenholz & Kidron, 1970).

2. Intensity expression in the microdomain model of a
ternary alloy structure

Symbols used in the present paper are listed in Table 1.

The basic equation of the SRO diffuse intensity from a

multicomponent alloy, if it has centrosymmetry of interatomic

correlation, is expressed as (Hashimoto, 1987a)

ISRO�q� � ÿ
P

i

P
j�>i�
jfi ÿ fjj2

P
m

P
n

h�i
m�

j
ni

� exp�ÿ2�i q � �Rm ÿ Rn��; �2�

where fi is the atomic scattering factor of the ith kind of atom

and q is the scattering vector. Here, both the static and the

dynamic displacements of atoms have been ignored for the

sake of brevity. �i
m is the parameter to represent a concen-

tration deviation from the alloy fraction xi, i.e.

�i
m �

1ÿ xi if atom of type i is at the mth

lattice site Rm

ÿxi otherwise,

8<: �3�

which is generally called the Flinn operator (de Fontaine,

1979; Taggart, 1973).

We will develop the SRO intensity equation according to

the concept of microdomains as illustrated in Fig. 2. Let the

microdomains be labelled with 1, 2, . . . , u, . . . , Nd. We here

de®ne a shape function Eu(Rm) for the uth domain:
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Eu�Rm� � 1 if Rm lies in a domain u

0 outside the domain u.

n
�4�

According to paper I, the diffuse-intensity equation (2) can be

developed as

ISRO�q� � IRM�q� � IMD�q�; �5a�

where

IRM�q� � nr

P
i

P
j�>i�

xixjjfi ÿ fjj2 �5b�

and

IMD�q� � ÿ
P

i

P
j�>i�
jfi ÿ fjj2

P
u

P
m

P
n

h�i
m�

j
ni

� Eu�Rm�Eu�Rn� exp�ÿ2�i q � �Rm ÿ Rn��: �5c�

nr is the number of atoms in the random matrix, IRM(q) reveals

the Laue monotonic scattering exclusively from the random

matrix and IMD(q) the intensity maxima arising from the

microdomains. The double summation in equations (5b) and

(5c) implies a sum only over the atomic pairs between

different species.

We ®rst consider the factor h�i
m�

j
ni in equation (5c). We

consider that the sites m and n belong to the sublattices

labelled M and N, respectively. Then h�i
m�

j
ni can be rewritten

as

h�i
m�

j
ni � h���i

m ÿHi
M� �Hi

M���� j
n ÿH

j
N� �H

j
N�i

� h��i
M ÿHi

M��� j
n ÿH

j
N�i � hHi

MH
j

Ni; for i 6� j;

�6�
where Hi

M is the average of �i
m only on the Mth sublattice. This

can be calculated in terms of xM
i , the atomic fraction of the ith

atom on the Mth sublattice, as

Hi
M � xM

i �1ÿ xi� �
P
j�6�i�

xM
j �ÿxi� � xM

i ÿ xi; �7�

where we used a conservation ruleP
i

xM
i � 1: �8�

The ®rst term on the right-hand side of equation (6)

vanishes for m 6� n under the assumption that there is no

short-range order between the mixing atoms in the ordered

lattice. Then it can readily be evaluated that

h��i
m ÿHi

M��� j
m ÿH

j
M�i � ÿwij; �9a�

where

wij � �1=Ns�
PNs

M�1

xM
i xM

j ; �9b�

in which Ns is the number of sublattices. wij vanishes when

each sublattice is occupied by atoms of a single kind, i.e. in the

case that xi � 1 and xj � 0 ( j 6� i). This is the case that the

ordering of atoms in the microdomains is perfect. Thus, wij is

thought to represent a degree of mixing of atomic species in the

ordered lattice. The wij term gives a Laue monotonic scattering

uniformly distributed in the q space or reciprocal space like

IRM(q).

Next we investigate the second term in equation (6). It can

be written in the form of a Fourier series as

Figure 1
Illustration of the relation between the total and partial short-range-
order diffuse scattering intensities. G and H are some superlattice
re¯ection positions.

Figure 2
A schematic illustration of a microdomain model for a short-range-
ordered alloy. Circles represent the ordered domains and the shaded
region the random matrix.



hHi
MH

j
M�Li � ÿ

P
G�BZ�

� ij
G exp�ÿ2�i G � RL�; �10a�

in which

� ij
G � ÿ<�F i

GF
j�

G �; �10b�
where

F i
G � �1=Ns�

P
M

Hi
M exp�2�i G � nM�: �10c�

G represents the superlattice re¯ection position. The

summation in equation (10a) is taken over the superlattice

re¯ection positions in the Brillouin zone for the fundamental

lattice or the average lattice. The subscript M � L labels the

sublattice translated by an intersublattice vector RL from the

sublattice M. <[ . . . ] in (10b) implies a real number of [ . . . ],

explicitly indicating the centrosymmetry of interatomic

correlation (Hashimoto, 1987a). nM in (10c) is the step-shift

vector of the Mth sublattice with respect to the ®rst one. Then

F i
G is regarded as a sort of structure factor of the ordered

structure with respect to the ith atom. Hereinafter, we call F i
G

`a partial structure factor'.

Now we turn to the factor Eu(Rm)Eu(Rn) in equation (5c).

We de®ne a continuous function E(r) with its centre at r = 0 as

an average shape function of Eu(Rm) in real space (see paper

I) by

�1=Nd�
P

u

P
m

Eu�Rm�Eu�Rm�l�

� �1=v0�
R

E�r�E�r� Rl� dr; �11�
where Nd is the number of domains over the whole crystal and

v0 is the crystal volume per atom. Thus, equation (5c) can be

written as

IMD�q� �
P

i

P
j�>i�
jfi ÿ fjj2

h
ndwij � Nd

P
G

� ij
G"

2�qÿG�
i
; �12a�

with

"�q� � �1=v0�
R

E�r� exp�ÿ2�i q � r� dr: �12b�
nd is the total number of atoms involved within all domains.

The factor "2(q ÿ G) in equation (12a) determines a pro®le of

the diffuse maximum centred at the superlattice re¯ection

position G, and also the number of atoms in the single domain

by its integration around G. � ij
G determines the sign (positive/

negative) of the diffuse maximum at G as well as the peak

height.

The SRO diffuse intensity per atom can ®nally be expressed

as

ISRO�q�=na �
P

i

P
j�>i�

xixjjfi ÿ fjj2�ij�q�; �13a�

where

�ij�q� � �1=na�
h

nr � �ndwij=xixj�

� �Nd=xixj�
P
G

� ij
G"

2�qÿG�
i
; �13b�

and na = nr + nd is the total number of atoms belonging to the

whole alloy crystal. Equation (13b) gives a quantity equivalent

to the Fourier transform of �ij
l , the Warren±Cowley SRO

parameter in a multicomponent alloy system, de®ned as

�ij
l � 1ÿ p

ij
l =xixj; �14�

where p
ij
l is the a priori probability of ®nding an ij atomic pair

with the interatomic vector Rl. The ®rst and second terms on

the right-hand side of equation (13b) jointly make a uniform

background, which must take a positive value less than unity

in Laue units. This `unity' means that all i and j atoms are

arranged at complete random over the crystal. Some ordering

of atoms modi®es the background so as to cause positive or

negative diffuse maximum at G.

3. Signs (+/ÿ/ÿ) of the partial intensities in the model

3.1. Possibility of a negative partial intensity maximum

A negative intensity maximum could be caused if � ij
G is

negative in equation (13b). ÿ� ij
G de®ned in equation (10b)

gives a scalar product of the vectors F i0
G and F

j
G in complex

space. The F
j

G's make a closed loop, for example, a triangle in a

ternary alloy as shown in Fig. 3, since we have a sum ruleP
i

F i
G � 0; �15�

Acta Cryst. (2000). A56, 85±91 Hashimoto � Microdomain model analysis 87

research papers

Table 1
Glossary.

r Positional vector in real space
Rm Lattice vector for the mth atomic site
nM Step-shift vector of sublattice M with respect to the ®rst

sublattice
q Scattering vector
G Superlattice re¯ection position
i, j Labels on the atomic species (A, B, C)
m, n Labels on the atomic lattice site
M, J Labels on the sublattice in the ordered lattice
Ns The number of sublattices in the ordered lattice
xi Fraction of ith atomic species
xM

i Fraction of ith atom on the Mth sublattice
fi Atomic scattering factor of the ith atom
�i

m Flinn's operator of the ith atom for the mth site [de®ned by
equation (3)]

Hi
M Average of �i

m on the Mth sublattice of the ordered lattice
structure

nr The number of atoms composing the random matrix
nd Total number of atoms within all the domains
na Total number of atoms in the crystal
v0 Crystal volume per atom
vq Volume of the Brillouin zone for the fundamental lattice

(= 1/v0)
Eu(Rm) Domain shape function of the uth domain [de®ned by

equation (4)]
E(r) Average shape function of the domains
"(q) Fourier transform of the shape function E(r)
wij Mixing parameter of wrong atoms in the ordered lattice of the

domain [de®ned by equation (9b)]
� ij

G Intersublattice correlation parameter [de®ned by equation
(10b)]

F i
G Partial structure factor of the ordered lattice per atom with

respect to atom i
�ij

l Warren±Cowly short-range-order parameter [de®ned by
equation (14)]

�ij(q) Fourier transform of the Warren±Cowley parameter �ij
l
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which is derived from equations (7) and (10c). Fig. 3 shows a

case of an obtuse-angled triangle; then �BC
G is negative and the

other two, �CA
G and �AB

G are positive. If the triangle is acute-

angled, all � ij
G are positive. A right-angled triangle represents

the case that one of the � ij
G is zero.

3.2. Consideration of the orientational variants of an ordered
lattice

It is known, especially in ordered alloys, that the symmetry

of local structure or domain can be lower than that of the

averaged structure over the whole alloy. Accordingly, there

may exist some orientational variants of the ordered lattice in

the present model. This situation is demonstrated in Fig. 4,

which shows, as an example, three orientational variants of the

CuAu-type (L10) ordered lattice. The total intensity from the

domains with different variants can be written as

IMD�q� �
P

i

P
j�>i�
jfi ÿ fjj2

P
v

h
ndwij � Nd

P
G

� ij
G"

2�qÿG�
i

v
;

�16�
where [ . . . ]v represents the quantity for the vth variants of the

ordered lattice. For example, [nd]v stands for the total number

of atoms belonging to the domains of the vth variant.
P

v

indicates the summation over all the variants. Thus, the sign of

the partial intensity maximum at G is characterized with � ij
ave

de®ned by

Nd�
ij
ave �

P
v

�Nd�
ij
G�v: �17�

3.3. Case of the ordered domain structure based on the
Cu-type face-centred cubic lattice

3.3.1. General properties. We here con®ne our discussion

to the ordered lattices based on the Cu-type face-centred

cubic (f.c.c.) structure in which four simple cubic sublattices

are distinguished as illustrated in Fig. 5. F i
G given in equation

(10c) is explicitly expressed as

4F i
G1;G2;G3

� Hi
I �Hi

II exp�ÿ�i�G1 �G2��
�Hi

III exp�ÿ�i�G2 �G3��
�Hi

IV exp�ÿ�i�G3 �G1��; �18�
where G = G1b1 + G2b2 + G3b3 (bs are the reciprocal-lattice

vectors). Equation (18) takes a real number at the superlattice

re¯ection positions (e.g. 100, 010 and 001 in the ®rst Brillouin

zone), since G1, G2 and G3 are integers. Thus, F i
G (i = A, B, C)

can be drawn as vectors lying on the real axis, as shown in

Fig. 6, which is a special case of Fig. 3. �BC
G is negative and the

others for AB and CA are positive, indicating that any one of

the � ij
G must generally be negative.

We next consider the case that the microdomains have

different orientational variants of the ordered lattice. If the

orientational variants are equally probable, the summation

over v in equation (17) can be replaced by that over G in the

case of the Cu-type f.c.c. alloy crystal (i.e. over the 100, 010 and

001 re¯ection positions), and we have

� ij
ave � 1

3

P
G

� ij
G: �19�

This is easily evaluated by putting L = 0 in equation (10a), i.e.

� ij
ave � ÿ 1

12

P4

M�1

�xM
i ÿ xi��xM

j ÿ xj�

� 1
3

h
xixj ÿ 1

4

P
M

xM
i xM

j

i
: �20�

Thus, a negative intensity maximum will appear, if the

following inequality is realized:

xixj <
1
4

P
M

xM
i xM

j ; �21�

Figure 4
Example of the orientational variants of the ordered lattice, showing three kinds of orientational variants of the L10-type ordered lattice.

Figure 3
Illustration of three F i

G vectors (i = A, B and C) making a closed loop in
complex space.



where the right-hand side is equal to wij de®ned in equation

(9b), which arises from the randomness in the ordered

domains. The left-hand side of equation (21) represents the

Laue monotonic scattering per lattice site for the i and j atomic

species in the completely disordered state of the alloy. Thus,

we cannot expect a negative partial intensity, unless the mixing

occupation exists in the sublattices of ordered lattice within

the domains. In other words, a condition of xM
i � 1, which

necessarily makes xM
j � 0 ( j 6� i), never satis®es equation (21),

causing positive maxima for the ij pairs.

3.3.2. Application to an A2BC alloy. We will calculate � ij
G

and � ij
ave for three example structures of the ordered lattice for

an A2BC ternary alloy, i.e. the extended L10, L10 and L12

structures.

(a) Extended L10 structure. We demonstrate a case such that

each sublattice can be fully occupied by atoms of a single kind.

An A2BC alloy enables a perfectly ordered structure in which

three kinds of atoms can ideally be assigned to the four

sublattices, as shown in Fig. 7(a). This is called the extended

L10-type ordered lattice.

Since xI
i � xII

i � 1
2 �4xi ÿ xIII

i ÿ xIV
i ), we can evaluate � ij

G as

� ij
100 � � ij

010 � ÿ�1=16��xIII
i ÿ xIV

i ��xIII
j ÿ xIV

j � �22a�
and

� ij
001 � ÿ��xIII

i � xIV
i �=2ÿ xi���xIII

j � xIV
j �=2ÿ xj�; �22b�

by using equation (18).

As the ®rst example, putting xI
A � xII

A � xIII
B � xIV

C � 1 and

the other fractions xM
i � 0, we can have � ij

G values as listed in

the column headed `1' in Table 2, indicating that the partial

intensity for a B±C atomic pair has a negative maximum at the

001 superlattice re¯ection position.

As already mentioned, the partial intensity belonging to

each superlattice re¯ection position is experimentally

observed as an average of the contributions from the three

different orientational variants. The average values are also

listed in the same column of Table 2, indicating that all of them

are positive. This does not contradict the inequality condition

(21) for a negative value. That is, the observable partial

intensities are all positive in the case that the extended L10

lattice structure is perfectly (or ideally) ordered in the

domains.

(b) L10 structure. The column headed `2' in Table 2 gives the

extreme case of atom mixing in the extended L10 structure, i.e.

xIII
B � xIV

B and xIII
C � xIV

C . This corresponds to the L10 type as

illustrated in Fig. 7b). We can see that �BC
001 is negative and the

others are positive at the 001 position, and that � ij
G vanish at

the 100 and 010 positions. �BC
ave is negative at all of the 100, 010

and 001 superlattice re¯ection positions, indicating that the

atom mixing causes the negative intensity maximum related to

equation (21).
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Figure 7
Unit structures for (a) the extended L10, (b) the L10 and (c) the L12 ordered lattices.

Figure 6
Relation among F i

G for the ordered lattice. All the F i
G can be real values

lying on the real axis by properly choosing the origin in the ordered
lattice.

Figure 5
Unit cell of the ordered lattice based on the Cu-type face-centred cubic
(f.c.c.) lattice. This is composed of four sublattices. n1, n2, n3 and n4 are
vectors between the sublattice.
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(c) L12 structure. Here we turn to the L12-type ordered

lattice (Fig. 7c). Three sublattices (II, III and IV) are occupied

by atomic species with the same fractions, i.e. xII
i � xIII

i � xIV
i

(i � A;B;C). Thus, � ij
G is calculated as

� ij
100 � � ij

010 � � ij
001 � ÿ 1

16 �xI
i ÿ xII

i ��xI
j ÿ xII

j �
� ÿ 1

9 �xI
i ÿ xi��xI

j ÿ xj�: �23�

The columns 3, 4 and 5 in Table 2 list example values of � ij
100

for three typical cases, illustrated in Figs. 8(a), 8(b) and 8(c),

respectively. Column 3 is given for a case that B atoms fully

occupy the sublattice I and the other kinds of atoms randomly

occupy the II, III and IV sublattices with fractional occupancy

probabilities. This random mixture of C and A atoms causes a

negative �CA
100 by satisfying the inequality relation (21). This

negativity of intensity for the C±A pair at the 100, 010 and 001

superlattice re¯ection positions must be compensated with the

uniform background intensity due to wCA.

The case of column 4, in which the sublattice I is mainly

occupied by A atoms, is quite different, but this atomic

arrangement gives almost the same ratio and signs among the

maxima as in the case of column 3, but causes much smaller

magnitudes.

In the case of column 5, in which A atoms are distributed all

over the sublattices without any preference, i.e. FA
G = 0, we can

see that no partial intensity maxima appear for the pairs

including A atoms, i.e. AB and CA.

4. Conclusions

In the present work, the X-ray intensity from the short-range

order (SRO) in a ternary alloy has been discussed under the

assumption that the alloy is constructed with minute ordered

regions or microdomains and a random matrix surrounding

the domains. The X-ray diffuse intensity scattered from this

alloy model is expressed as a sum of three terms, i.e. the Laue

monotonic scattering from the random matrix, the monotonic

scattering due to the atom mixing in the ordered lattice within

the domains, and the diffuse maxima due to the ordering in the

domains.

On the other hand, the total intensity is experimentally

observed to be positive as a superposition of the partial

intensities for the AB, BC and CA pairs in an A±B±C ternary

alloy. The partial intensities are known to be obtainable

separately via the anomalous-scattering method by use of

several kinds of incident X-rays with different energies

(Hashimoto et al., 1985). We found, in the microdomain

Figure 8
Structure models with different atomic fractions for the L12-type ordered lattice taken as examples in the calculation. (a) Structure corresponding to
column 3 in Table 2, (b) that corresponding to column 4 and (c) that corresponding to column 5.

Table 2
Example calculation of � ij

G and wij values for various internal domain
structures of the extended L10, L10 and L12 types in an A2BC alloy.

Column 1: extended L10 type, xI
A � xII

A � xIII
B � xIV

C � 1 and other fractions
xM

i � 0 (Fig. 7a). Column 2: L10 type, xIII
B � xIV

B and xIII
C � xIV

C (Fig. 7b).
Columns 3, 4, 5: L12 type (Fig. 7c). A2BC alloy: xA � 0:5, xB � 0:25 and
xC � 0:25. � ij

ave � 1
3 �� ij

100 � � ij
010 � � ij

001). � ij
010 � � ij

100.

1 2 3 4 5

xI
i A 1.0000 1.0000 0.0000 0.6000 0.5000

B 0.0000 0.0000 1.0000 0.1000 0.5000
C 0.0000 0.0000 0.0000 0.3000 0.0000

xII
i A 1.0000 1.0000 0.6667 0.4667 0.5000

B 0.0000 0.0000 0.0000 0.3000 0.1667
C 0.0000 0.0000 0.3333 0.2333 0.3333

xIII
i A 0.0000 0.0000 0.6667 0.4667 0.5000

B 1.0000 0.5000 0.0000 0.3000 0.1667
C 0.0000 0.5000 0.3333 0.2333 0.3333

xIV
i A 0.0000 0.0000 0.6667 0.4667 0.5000

B 0.0000 0.5000 0.0000 0.3000 0.1667
C 1.0000 0.5000 0.3333 0.2333 0.3333

� ij
100 BC 0.0625 0.0000 0.0208 0.0008 0.0069

CA 0.0000 0.0000 ÿ0.0139 ÿ0.0005 0.0000
AB 0.0000 0.0000 0.0417 0.0017 0.0000

� ij
001 BC ÿ0.0625 ÿ0.0625 0.0208 0.0008 0.0069

CA 0.1250 0.1250 ÿ0.0139 ÿ0.0005 0.0000
AB 0.1250 0.1250 0.0417 0.0017 0.0000

� ij
ave BC 0.0208 ÿ0.0208 0.0208 0.0008 0.0069

CA 0.0417 0.0417 ÿ0.0139 ÿ0.0005 0.0000
AB 0.0417 0.0417 0.0417 0.0017 0.0000

wij BC 0.0000 0.1250 0.0000 0.0600 0.0417
CA 0.0000 0.0000 0.1667 0.1267 0.1250
AB 0.0000 0.0000 0.0000 0.1200 0.1250



structure of SRO, that any one of the three partial intensity

maxima for the AB, BC and CA pairs necessarily takes a

negative value at every superlattice re¯ection position G

coinciding with the sign of � ij
G given in equation (10b). In other

words, all the partial intensity maxima cannot be positive

simultaneously, since ÿ� ij
G is given as a scalar product between

two of the three partial structure factors F
ij

G (i = A, B, C),

which make a closed loop just on the real axis in complex

space (see Fig. 6).

In the case that ordered domains are locally stabilized with

a lower rotational symmetry than that of the overall structure

of the alloy, the total SRO intensity may be observed as a

superposition of the re¯ections of different indices from the

orientational variants of the ordered lattice. If the funda-

mental (or average) lattice is based on the Cu-type f.c.c. lattice,

all the partial intensities can be positive in a special case. It is

the inequality relation (21) that determines whether the

partial intensity takes a negative maximum or not. The rela-

tion shows that all the observed maxima in reciprocal space

must be positive, if each variant has a highly ordered structure.

Atom mixing or some disordering on the sublattices can satisfy

the inequality relation so that any of the partial intensities may

be negative.

Thus, we can meet the possibility of observing a negative

partial intensity maximum when one of the following condi-

tions is satis®ed.

(i) The rotational symmetry of the ordered structure in a

domain and that of the overall alloy structure are identical,

which generates a microdomain structure with a single

orientational variant of order.

(ii) In the case that the locally ordered lattice has a lower

rotational symmetry than that of the overall fundamental

lattice, which generates several variants of different orienta-

tions, the atom mixing on the sublattices is enhanced so as to

satisfy the inequality relation (21).

The conditions (i) and (ii) do not contradict each other. The

L12-type ordered structure can exist as a single variant in the

random matrix, causing negative partial intensity for any one

of the pairs. Even the average of the independent re¯ections

gives the same signs. This shows that the L12 structure

intrinsically includes atom mixing on the sublattices, enough to

satisfy the inequality relation (21).

Inversely, we can say that, if we ®nd all the partial intensities

to be positive, the SRO state can be interpreted as having

highly ordered orientational variants and causing the diffuse

maximum as a superposition from the variants.
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